“Oh, my furniture is floating” — A Look into Promoting Flooding and Heat Stress Resilience in Self-build Housing

Bobuchi Ken-Opurum, PhD

 “When it's raining, I can't move into my street, oh I can't come in. Oh, my furniture is floating…your car is floating, you can't get into your house.” This was said by one of the focus group participants in my research study, as she described the severity of flooding conditions in Lekki, Lagos (Nigeria). Her concerns not only provide a view of flooding severity in parts of Lagos, but also echoes similar conditions in many other tropical regions of the Global South that are frequently affected by flooding and heat stress – the counterpart.


In many cities in countries such as Nigeria, Ghana, and Bangladesh, with tropical monsoon, rainforest, and savannah climates, frequent and intense rainfall coupled with factors including substandard drainage and impervious surfaces lead to flooding and inundation of property. Many of these cities are also dense, with little to no vegetation, and constructed with hard and impervious surfaces — making it commonplace for temperatures to go as high as 118 degrees Fahrenheit. When coupled with other factors such as the choice of building materials, unreliable electricity supply, or at times disconnection from the grid, urban dwellers are left vulnerable to high temperatures, particularly indoor heat stress. The Intergovernmental Panel on Climate Change (IPCC) estimates that the global mean temperature will rise by 2.5°F to 10.4°F (1.4 to 5.8°C) between 1990 and 2100. Most concerning, it is predicted that temperatures of sub-Saharan Africa will be “higher than the global mean temperature increase” with expected “longer and more frequent heat waves” (Shepard, 2019).



Flooding and Heat Stress


Coastal Nigeria is one of the most vulnerable regions to flooding and heat stress (F&HS). For one, the dense cities of Lagos in the southwest and Port-Harcourt in the south-south are low-lying. Per Rashid, et al. (2013), a series of research studies predict that sea-level rise “will create additional flooding risks for the 600 million people living in low-elevation coastal zones.” Further risk factors in coastal Nigeria such as substandard drainage systems, low maintenance of existing drainage systems, unplanned land use, and the topography of dwelling sites expose households in these cities to localized flooding and storm surges.


Nigeria has also seen a significant and steady rise in temperatures since the 1980s, however, the power supply remains unreliable. This exacerbates the effects of high temperatures on households, especially during daytime in the dry season. When you add sensitivity factors such as low-income levels because of high poverty rates, the ability of urban dwellers in these cities to respond effectively to both flooding and heat stress diminishes.


Consequently, every year, thousands of people in coastal Nigeria are displaced from flooding, thousands of lives are lost, and there is an increased occurrence of water and vector-borne diseases such as cholera and malaria, which can be especially fatal for young children and the elderly. Furthermore, prolonged exposure to high temperatures can worsen chronic conditions such as cardiovascular disease, respiratory disease, and diabetes-related conditions.


In addition to these health issues, there are millions of dollars lost in property damages, including expenses related to redevelopment of damaged homes and replacement of tangible property from major flooding and waterlogging. Unfortunately, the burden of these losses is especially high for households that build their own homes themselves through the self-build housing delivery process.



Self-build Housing


Growing up in a self-built house in a diverse neighborhood with homes of both formal and informal settlement typologies, the impacts of these losses were all around me. However, I also noticed ingenious responses to the flooding as it happened, actions that improved thermal comfort, and actions that capitalized well-being despite the daily challenges from intense rainfall and hot days.


My curiosity was ignited by this ingenuity and spurred my academic research into what were the design solutions utilized by households in the tropical Global South that helped them cope and adapt to both flooding and heat stress. Were they the same as strategies I had seen? How did they differ and how successful were they? My quest for these answers led to the development of the Re-HOUSED toolkit with three tools: 1) a matrix of 149 F&HS resilience design solutions, 2) a web application to diagnose vulnerabilities and contexts of decision-makers through an algorithm I developed that predicts viable design solutions among available options, and 3) a simplified guidebook to inform non-expert and technically low-skilled self-builders on how to design-build or make improvements to their housing to increase resilience against F&HS.



What Drives This Ingenuity?


I found from my research that this handmade urbanism of coping and adapting strategies is fueled by factors such as risk perception, local and indigenous knowledge, prior experience with loss and vulnerability, ‘fight or flight’, locus of control, available resources such as building materials, household makeup, and culture.


Bottom-up resilience is primarily cultivated from the need of households to protect their dwelling. There is a higher sense of responsibility and stake in coping and adapting to climate vulnerabilities when assets are owned or built by the individuals responsible for those assets. The literature shows that self-build housing occupants in countries of the tropical Global South such as Nigeria, Ghana, Uganda, and Bangladesh, are relatively more knowledgeable about their perceived risks of climate vulnerabilities and how to address those vulnerabilities to cope and adapt. Urban dwellers in both formal and informal settlements have greater flexibility to develop, explore, and utilize bottom-up solutions when they build their housing themselves or utilize self-build practices.


If occupants of both informal and formal self-build urban settlements are coping with climate vulnerabilities with a degree of success, then there are opportunities to learn about resilience in those communities and the factors that contribute to long-term success.

 

The Research Framework


So, how can one learn about bottom-up resilience from frontline communities and collaboratively develop viable solutions? Through my work, I have gleaned five main steps for effectively approaching bottom-up resilience.


  1. Learning about existing solutions through ethnographic research methods or review information gained through ethnographic research.
  2. Engage with community members and key stakeholders to identify barriers to adopting proven solutions at the local level.
  3. Design/develop solutions with key stakeholders through Human Centered Design techniques.
  4. Validate the application of these solutions with real-life applications/engagement with key stakeholders. 
  5. Engage with key stakeholders to identify the best communication strategies for disseminating information on the solutions.


From my experience in climate research, resilience, and adaptation, a people-centered approach is most important. This focus on lived experiences and working with stakeholders rather than for stakeholders is very present in the research I lead at the Texas Energy Poverty Research Institute, where we work towards advancing solutions for affordable, reliable, and clean energy for marginalized and disadvantaged communities.



Our Work Is Far from Over


Re-HOUSED will be an ongoing initiative that, with time, I hope will include different climatic and cultural contexts such as the Colonias in the United States. I plan to continuously push the boundaries on how we can learn from frontline communities — engaging with them to better understand their lived experiences and to develop more affordable solutions and systems that not only improve resilience but also support adaptive capacity.  



About the Author:

Bobuchi Ken-Opurum, PhD
Founder, Re-HOUSED Decision Support Toolkit
Director of Research, Texas Energy Poverty Research Institute


PHOTO: Rachel Claire | Pexels


Read perspectives from the ISSP blog

Paper cut-out figures holding hands in a chain against a dark blue background.
By Elizabeth Dinschel, December 18, 2025 December 18, 2025
Elizabeth Dinschel, MA, MBA, is the Executive Director of ISSP Earlier this month, we hosted our first global ISSP Town Hall since I stepped into the role of Executive Director. I logged off that call energized, humbled, and deeply grateful for the honesty, generosity, and care that our members brought into the space. This Town Hall was never meant to be a one-way update. It was designed as a listening session — a chance for ISSP leadership and staff to hear directly from sustainability professionals across regions, sectors, and career stages. And you delivered. What follows are a few reflections on what I heard, what we learned, and where we’re headed next together. Why We Called This Town Hall ISSP has gone through a period of transition — new leadership, new staff, and a renewed focus on modernizing how we serve a truly global membership. Change can be energizing, but it can also create moments of uncertainty and disconnection. We knew we needed to pause, gather our community, and listen with intention. The Town Hall brought together members from multiple continents, industries, and disciplines. Sustainability practitioners, consultants, engineers, communicators, policy professionals, and career-transitioners all showed up with thoughtful questions and candid feedback. One thing was immediately clear: this community cares deeply about its work, about each other, and about ISSP’s role in supporting sustainability professionals at a challenging moment for the field.
Can sustainability be saved by tackling loneliness, not just CO₂ emissions?
By Raz Godelnik, Associate Professor November 20, 2025
Raz Godelnik is an Associate Professor of Strategic Design and Management at Parsons School of Design — The New School. He is the author of Rethinking Corporate Sustainability in the Era of Climate Crisis . You can follow him on LinkedIn .  Can sustainability be saved by tackling loneliness, not just CO₂ emissions? Earlier this month, I stopped at Sunshine Coffee in Laramie, Wyoming, on our way to Yellowstone Park. What brought me there was the fact that it’s a zero-waste coffee shop, with no single-use consumer items. In other words, there are no disposable cups — not for customers dining in, and not even for those who want their coffee to go, like I did. Instead, you can either bring your own reusable cup or get your drink in a glass jar for $1, which is refunded on your next order when you return it (or you can simply keep it, as I did). At first, I was excited about the zero-waste coffee shop concept, wondering what it would take for Starbucks and other coffee chains to adopt it and eliminate the waste that has become an integral part of our coffee (and other drinks) consumption. But as I waited for my coffee, I began to notice something else — something that had little to do with waste and everything to do with people. As I looked around, I noticed their stickers. Beneath the logo, it read: Zero waste. Community space . Suddenly it clicked — this coffee shop isn’t just about eliminating waste; it’s about creating a place where people feel connected. As owner and founder of Sunshine Coffee, Megan Johnson, explained in an interview with This is Laramie : “I wanted to bring sustainable values to Wyoming as well as build a business that serves the community.” That got me thinking about how the second part — serving the community — is integral to the first. After all, in a world where loneliness — a key barrier to people’s well-being — is on the rise, shouldn’t creating spaces for connection be just as central to sustainability as going zero waste?
By Nicole Cacal, MSc, October 30, 2025
Nicole Cacal, MSc, is Executive Director of the TRUE Initiative in Hawaii and serves as Vice President on the Governing Board of ISSP. In our October blog, she challenges the prevailing narrative around AI's environmental impact, arguing that strategic deployment can transform AI from an environmental burden into a driver of recursive sustainability. Drawing on her background in strategic design and technology management, she presents emerging pathways for responsible AI adoption that balance societal benefit against environmental risk. Toward Appropriate and Responsible AI: Pathways to Sustainable Adoption and Infrastructure Nicole Cacal · October 27, 2025 Whenever I give an AI presentation or offer advice on AI adoption, whether to business owners, C-level executives, or sustainability professionals, one concern surfaces time and time again, especially here in Hawaii: the environmental tension. People want to explore AI's potential, but they're acutely aware of the energy consumption, the water usage, the carbon footprint. It's become almost a reflex: mention AI, and someone immediately raises the environmental cost. I get it. The data centers, the training runs, and the resource demands. They're real and they're significant. But here's what I've come to believe: if we shift the narrative from focusing solely on AI's detriment to the environment and instead ask how much good it can create, what role we can play in driving data centers to go greener, and how we can generate recursive sustainability, we unlock better questions. We start thinking forward rather than just defensively. As sustainability professionals, our job isn't to reject technology wholesale. It's to shape its evolution. And right now, we have an opportunity to influence how AI develops and deploys in ways that align with planetary boundaries and social equity. But to do that, we need to move beyond binary thinking. Right-Sizing AI: Why Bigger Isn't Always Better One of the most overlooked levers we have for sustainable AI is also one of the simplest: choosing the right model for the job. The AI industry has been caught in a "bigger is better" arms race for years now. Every new model release touts more parameters, more capabilities, more everything. And sure, these massive general-purpose models are impressive. But they've created a dangerous assumption: that every task requires maximum firepower. This is where my strategic design training from Parsons kicks in. Good design isn't about having the biggest toolkit. It's about matching the tool to the task. It's about elegance through constraint. The same principle applies to AI deployment. The emerging concept of "Small is Sufficient " is gaining traction for good reason. Research shows that selecting smaller, purpose-fit AI models for specific tasks can achieve nearly the same accuracy as their larger counterparts while reducing global energy demand by up to 28% . Twenty-eight percent. That's not marginal; that's transformational. Think about what your organization actually needs. Are you processing customer service inquiries? Analyzing spreadsheet data? Generating product descriptions? Most of these tasks don't require a frontier model. A fine-tuned, task-specific model will do the job with a fraction of the computational overhead. The shift we need is cultural as much as technical. We need to move from asking "what's the most powerful AI we can deploy?" to "what's the most appropriate AI for this specific use case?" That question changes everything, from procurement decisions to vendor relationships, internal training, and infrastructure planning. AI as Infrastructure Manager: The Self-Optimizing Data Center Here's an irony that doesn't get enough attention: AI might be energy-intensive, but it's also one of our best tools for managing energy systems efficiently. When we only think of AI as a consumer of data center resources, we miss part of the story. AI can also be the conductor of efficiency, orchestrating complex systems in real-time to minimize waste and maximize renewable integration. Consider three optimization domains where AI is already making measurable impact: Cooling systems: Data centers generate enormous heat, and cooling accounts for a massive portion of their energy use. AI can continuously adjust cooling based on workload patterns, outside temperature, humidity, and dozens of other variables, optimizing in ways that static systems simply can't match. Workload scheduling: Not all computing tasks need to happen immediately. AI can intelligently schedule batch processing, model training, and background tasks for times when renewable energy is abundant or when grid demand is lowest. This isn't just theory. Companies are already doing this. Renewable energy integration: This one hits close to home in Hawaii, where we're working toward aggressive renewable energy targets but face unique challenges with grid stability and storage. AI-managed facilities can modulate demand in response to solar and wind availability, essentially turning data centers into flexible grid assets rather than inflexible burdens. When organizations approach their operations as integrated systems rather than collections of independent components, they achieve results that surprise even them. AI-orchestrated data centers represent this systems thinking at its most sophisticated. The technology optimizes itself recursively, reducing the footprint of AI through AI. That's the kind of elegant solution we should be scaling. Measuring What Matters: Beyond Energy to Net Benefit But here's the challenge: if we only measure AI's direct energy consumption, we miss the full picture. We need frameworks that capture both the operational cost and the systemic benefit. This is where life cycle assessment combined with comparative modeling becomes essential. We need to ask: compared to what? And over what timeframe? The sectoral success stories are compelling when you run the numbers: Building automation systems powered by AI are consistently achieving energy savings in the range of 20-30% across diverse building types. One documented case study of a commercial office building in the United States showed a 32% reduction in overall energy consumption with a 2.4-year return on investment (a $2.1 million system investment generating $875,000 in annual savings). In Stockholm, the SISAB school building portfolio achieved similar results with a two-year payback period. In precision agriculture, AI-driven irrigation and fertilizer application systems are cutting water consumption by 20% to as much as 50% and reducing chemical runoff, addressing both resource scarcity and ecosystem health. Waste management optimization is another powerful example. AI-powered sorting systems in recycling facilities dramatically improve material recovery rates while reducing contamination. The resource efficiency gains far exceed the AI system's energy footprint. These aren't marginal improvements. When properly deployed, targeted AI applications produce emissions savings and resource efficiencies that dwarf their own operational costs. That being said, given today's fossil fueled data center expansions, we may find that we have much further to go in making the environmental positives outweigh the negatives. But that's no reason to throw in the towel or to assume that these technologies cannot - over time - deliver more environmental benefits than downsides. It requires companies to demand more of their technology providers and deploy their systems sustainably when greener options become available. But (and this is crucial) these benefits only materialize when we pair the right AI with the right infrastructure and the right deployment strategy. Which brings us to governance. The Path Forward: Governance, Transparency, and Adaptive Thinking The sustainability community, including organizations like ISSP, is actively developing shared frameworks for assessing AI's net impact. These emerging approaches include system-level energy auditing, selective task deployment protocols, and strategies for minimizing "dark data" (the vast amounts of stored data that's never used but still requires energy to maintain). Multi-stakeholder governance initiatives are bringing together technologists, policymakers, environmental scientists, and business leaders to create adaptive standards. This isn't about creating rigid regulations that will be obsolete in two years. It's about establishing principles and processes that evolve with the technology. Those with a technology management background know that the most successful systems are those designed for adaptation. We need governance structures that can respond to new information, course-correct quickly, and remain grounded in measurable outcomes. Transparency is non-negotiable. Organizations deploying AI need to measure and report not just their energy consumption but their net impact. What problems are you solving? What resources are you saving? What would the alternative approach have cost? These aren't easy questions, but they're the right ones. As sustainability professionals, this is our arena. We have the frameworks: life cycle thinking, systems analysis, stakeholder engagement, and metrics development, to name a few. We need to apply these tools to AI with the same rigor we've applied to supply chains, built environments, and industrial processes. So here's my invitation: What are you seeing in your sector? How is your organization approaching the AI sustainability question? Are you finding innovative ways to ensure deployment is appropriate and responsible? Because ultimately, appropriate AI isn't about choosing between progress and sustainability. It's about insisting that progress is sustainable. It's about right-sizing models, optimizing infrastructure, measuring net benefit, and building governance systems worthy of the challenge. The technology itself is neutral. Our choices determine whether AI becomes a driver of sustainability or another extractive burden. Let's choose wisely.
More blog posts